Alternative fuel options for urban bus applications in the Netherlands. Results of a comparative TNO study

Dr. Richard H. Clark
Shell Global Solutions

CLEAN MOVES, Expo Hannover, 20-24 April 2009
A Study by TNO

- TNO Report Authors
 - S. Bleuanus, T. Hartikka, R. De Lange,
 - N. Ligterink, R. Breunesse, R.S.G. Baert

- Full TNO report available on TNO website
 1. www.tno.nl
 2. Select English version
 3. Select “Knowledge” followed by “Recent Reports”
 4. Search for “Alternative Fuels”
Talk Synopsis

• Background to Study
• Outline of Study
• Methodology & Assumptions
• Results
 - Emissions (NOx, PM)
 - Global Warming Potential (GWP)
 - Cost impact
 - Emissions cost benefit trade-off
 - Other issues
• Conclusion
Background to Study

• Shell collaboration in 2007 with Connexxion
 - Largest bus operator in the Netherlands
 - Laboratory emission measurements

• Desire to build on trial data
 - Understand more about the use of GTL fuel from the viewpoint of a bus operator, in Netherlands context
 - Costs, Environmental pressures, Ease of use etc.
 - Broaden that understanding to cover a range of alternative fuels & engine technologies, comparison with conventional diesel

• TNO commissioned to perform this study
Outline of Study

• Like-for-like comparison of different alternative fuels for city buses
 - 1) Regular (EN590) “zero” sulphur diesel (<10ppm). Reference for study
 - 2) GTL (Gas To Liquid, a synthetic diesel fuel made from natural gas)
 - 3) B100 (biodiesel)
 - 4) CNG (Compressed Natural Gas)
 - Fast- and slow-fill fuel station option. From Dutch perspective
 In less detail
 - 5) Ethanol (with additives), to be used in a diesel cycle engine
 - 6) CBG (Compressed BioGas, upgraded & cleaned biogas; slow-fill case)

• Required outputs of study
 - Local emissions of NOx, PM, CO and HC
 - Well-to-Wheel and Tank-to-Wheel GWP [Global Warming Potential]
 - Cost effects of the various options, divided into:
 - Vehicle operational cost
 - Infrastructure cost
 - Capital cost
 - Other issues of interest
GTL-optimised vs. regular diesel

• Detailed parts of TNO study considered GTL as a “drop in” replacement for diesel in unmodified engines
 - Robust level of information, especially fleet costs

• However there are studies and publications to indicate further advantages of GTL in optimised engines
 - Lowering CR will reduce NOx emission while maintaining good cold starting behaviour
 - Lower CR also reduces in-cylinder pressure levels and therefore friction losses, particularly at the lower loads
 - For a given NOx-target, PM-levels will be lower, resulting in lowered fuel consumption for active DPF regeneration
 - True Zero-sulphur fuel is more aftertreatment-friendly
 - Time between oil replacement will be higher

• Potential for lower maintenance costs and up to 5% better energy efficiency (estimate)
Methodology – Cost Impact

- TNO have developed cost model for calculating additional expenses of operating urban bus fleet on an alternative fuel.
 - Cost model is designed to compare different vehicle and fuel options

<table>
<thead>
<tr>
<th>Fleet Info</th>
<th>Fuels</th>
<th>Infrastructure</th>
<th>Vehicle</th>
<th>Capital cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleet size</td>
<td>Prices</td>
<td>Fuel station costs (initial and annual)</td>
<td>New Vehicle Prices</td>
<td>For infrastructure</td>
</tr>
<tr>
<td>Annual mileage</td>
<td>Taxes</td>
<td>Maintenance costs</td>
<td>Maintenance costs</td>
<td>For vehicles</td>
</tr>
<tr>
<td></td>
<td>Additional costs (e.g. Pressurising for CNG)</td>
<td>Training costs for personnel</td>
<td>Insurance & annual costs</td>
<td>Interest rate</td>
</tr>
<tr>
<td>Density</td>
<td>Facility modification costs</td>
<td>Vehicle depreciation rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy content</td>
<td>Fuel station insurance cost</td>
<td>Fuel & additives consumption</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Methodology – Emissions and GWP

- Generation of real world emissions values, i.e. those expected for on-road city bus style driving. Taken directly from literature or using VERSIT+ emission model applied to data
 - First stage: emission values estimated for regular diesel & CNG buses
 - Second stage: 2nd literature review comparing emissions levels of 3 diesel engine options: diesel, GTL, biodiesel
 - Focus on fuel comparisons with same vehicle or engine, to extract fuel effects from engine-to-engine variation effects

- Total global warming potential (GWP) is calculated for every option using a well-to-wheels methodology.
 - Well-To-Tank part based on EU JRC study, most recent (Mar07)
 - Tank-To-Wheel part calculated from the data provided by the cycle simulations, giving energy consumption of every fuel option in MJ/km.
 - In addition to CO₂, the GWP calculations include methane (CH₄) and nitrous oxide (N₂O), with weighting factors of 23 and 296.
 - Same weighting factors as used in the JRC/Eucar/Concawe study
Assumptions

• Baseline diesel fleet:
 - 85 buses travelling 60,000 km/year each
 - 12 meter buses fuelled by regular diesel fuel
 - EU3, EUIV (SCR or EGR) and EUV/EEV emission level
 - Average occupancy: 40 passengers (2800 kg)

• Gas Fuelled fleets
 - Cost penalty per vehicle of 32,5K€uro if bought new
 - Depreciation rate 95% in 8 years [vs diesel buses 62,5% in 8 years]
 - Refuelling station [slow fill] 85 gas powered buses = 1,830,000 Euro
 - Refuelling station [fast fill] 85 gas powered buses = 3,150,000 Euro

• All alternative fuels, other infrastructure modifications
 - CNG / biogas: 110,000 Euro (+ extra shift for overnight refuelling)
 - B100 / GTL: 2,000 Euro
 - E100: 5,000 Euro
Results: -Emissions

- Air quality related emissions (NOx, PM) presented
 - HC and CO are also given in the full TNO report

- These are given by emissions legislation class & engine technology (Euro 3, Euro 4 and Euro5 / EEV)

- Euro 5 / EEV are combined and only “best available” technology is taken into consideration

- Note: other vehicle sources (tyres, brakes) emit around 0,08 g/km of PM
 - These become significant for the more modern technology
Results: EURO3 NOx and PM emissions

Red line represents other sources of PM10 (brakes, tires)
Results: EURO 4 EGR & SCR NOx and PM Emissions

Red line represents other sources of PM10 (brakes, tires)
Results: EURO5/EEV NO\textsubscript{x} and PM emissions

![Bar chart showing NO\textsubscript{x} and PM emissions for different fuels and combustion methods.](image)
Emissions Conclusions

NOx Emissions

- GTL shows benefit versus reference diesel, whereas B100 shows detriment
 - This trend is across all technologies Euro-3 to Euro-5
 - GTL benefit in 12-17% range

- Broadly similar levels of NOx for the GTL and CNG cases
 - Across all technologies Euro-3 to Euro-5
 - Exception Euro-5/EEV CNG lean burn, worse than diesel/GTL counterparts

- Modification of this simple picture via influence of engine technology
 - For diesel & GTL, SCR systems give lower emissions than EGR system
 - For CNG systems stoichiometric gives lower emissions than lean burn

PM Emissions

- GTL and B100 show benefit versus reference diesel
 - The show similar magnitude for Euro-4 & Euro-5, but B100 better for Euro-3 case
 - GTL benefit in 18-29% range

- PM emissions from natural gas vehicles are negligible, but this is also the case for all fuel options with Euro-5
 - e.g. For low emitting vehicle quantities lower than those produced from tyres
Results: -global warming potential

- GWP (global warming potential results presented as
 - Well-To-Tank (WTT)
 - Tank-To-Wheel (TTW)
 - Well-To-Wheel (WTW=WTT+TTW)

- CO₂ equivalent emissions are presented, these included
 - CO₂
 - CH₄
 - N₂O

- These are given by emissions legislation class & engine technology (Euro 3, Euro 4 and Euro5 / EEV)

- Euro 5 / EEV are combined and only “best available” technology is taken into consideration
Results EURO III Global Warming potential

- **CO₂ [g/km]**
 - diesel: 274, 1413, 1486, 1686
 - GTL: 484, 1365, 1849
 - B100: 964, 1470
 - E100: 202, 1377
 - CNG Lean (conservative): 387, 1219
 - CEG Lean: 223, 1219
 - CNG Lean: 1442

Legend:
- GWP WTT (g/km CO₂ eq.)
- GWP TTW (g/km CO₂ eq.)
- GWP WTW (g/km CO₂ eq.)
Results EURO IV Global Warming potential

![Graph showing CO2 emissions comparison for various technologies and exhaust treatments, with data points for GWP WTT, GWP TTW, and GWP WTW expressed in g/km CO2 eq.](image-url)
Results EURO V/EEV Global Warming potential
Global Warming Potential (GWP) Conclusions

NOTE: GWP graphs show error bars
+/- 10% on the WTT emissions & 5% on the TTW emissions

- WTW CO$_2$ emission error bars tend to overlap for regular diesel, GTL and CNG (both technologies). Against this background, non-bio fuel options come close
 - Important factor: diesel GWP might increase in near future

- CNG position can be significantly changed by gas source
 - Dutch mix CNG or conservative [long-distance pipeline option]?
 - Conservative CNG stoichiometric case is worse than diesel reference

- Best GWP results are obviously obtained with those biofuels considered in the study, E100, B100, CBG
Results – Fleet Costs

• Sub-divided into the several different cost factors
 - Presented with and without tax

• Following scenarios were used for the calculations:
 - use of existing Euro-3 vehicles
 - use of existing Euro-4 SCR vehicles
 - new Euro-4 SCR vehicles
 - new Euro-4 EGR vehicles
 - new Euro-5/EEV SCR vehicles
 - new lean-burn natural gas vehicles (EEV class)
 - new stoichiometric natural gas vehicles (EEV class)
 - new ethanol Euro-4 EGR vehicles

• For the diesel vehicles three different fuels were considered:
 - Regular diesel (EN590)
 - GTL (Gas To Liquid)
 - B100 (RME).
Results: Total fleet costs €ct / passenger km w.o. tax

EN590 | CNG | B100 (RME) | GTL | Biogas

- Using existing fleet Euro3
- Using existing fleet Euro4 SCR
- New vehicle Euro4 SCR
- New vehicle Euro4 SCR+DPF
- Using existing fleet Euro5 SCR
- New vehicle Euro5 SCR
- New vehicle Euro5 SCR+DPF
- Using existing fleet Euro6 SCR
- New vehicle Euro6 SCR
- New vehicle Euro6 SCR+DPF
- New vehicle Euro6 SCR+DPF+4
- Euro6 SCR+4
- New vehicle Euro6 SCR+4
- New vehicle Euro6 SCR+4

Legend:
- Vehicle costs €ct/passenger km
- Vehicle capital cost €ct/passenger km
- Infrastructure costs €ct/passenger km
- Infrastructure capital cost €ct/passenger km
- Fuel costs without tax €ct/passenger km
- CNG compression energy cost €ct/passenger km
- Adblue costs €ct/passenger km
Results Total fleet costs €ct / passenger km
Fleet Costs Conclusions

Fleet costs – No tax
- GTL is the most cost-effective alternative fuel option
 - costs are only slightly above regular diesel
 - next best fuel option is biodiesel
- CNG (slow-fill and fast-fill) come in third position
 - mainly the result of higher (fuel station & vehicle) investment
- Biogas even more expensive than natural gas while ethanol is least economical

Fleet cost – Including tax
- GTL and CNG options now come very close on fleet costs
- Natural gas vehicles are considered only in context of buying new vehicles, that is in competition with other Euro-5/EEV technology
- Overview figures of all fuels only considers cheaper slow-fill option
Results: Total fleet costs €ct / passenger km w.o. Tax
-Focus on CNG & GTL options
Results Total fleet costs €ct / passenger km
Focus on CNG and GTL options
Emissions cost-benefit trade-off

- Costs are calculated to reduce PM & NOx by one tonne per annum
 - Using emissions & fleet cost results within the study, Euro-3 is taken as the baseline bus fleet

PM emissions
- GTL and CNG are the best options
 - Relative positions of CNG and GTL depend on tax regime
 - For identical tax regime, GTL is the best option

NOx emissions
- Replacement of diesel by GTL in existing fleet is the option with highest cost-benefit trade-off (irrespective of taxation)
- If new vehicles considered, Euro-5/EEV should be preferred above Euro-4
 - For new Euro-5/EEV vehicles, GTL option is again the best one.
 - Although difference versus stoichiometric CNG version is very small

- Drop-in replacement of diesel by biodiesel always more expensive.
Costs to lower PM emissions (relatively compared to EURO 3 diesel bus)
Costs to lower NOx emissions (relatively compared to EURO 3 diesel bus)
Results, Other issues

<table>
<thead>
<tr>
<th></th>
<th>Exterior noise</th>
<th>Residual value</th>
<th>Insurance</th>
<th>Guarantee</th>
<th>Refueling safety</th>
<th>Fuel spill effects (biodegradability)</th>
<th>Fuel smell</th>
<th>NO₂ emissions</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GTL</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>++</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>CNG</td>
<td>++</td>
<td>--</td>
<td>-</td>
<td>0</td>
<td>0/-</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>0</td>
</tr>
<tr>
<td>B100</td>
<td>0</td>
<td>0/- **</td>
<td>0</td>
<td>-(-)</td>
<td>0</td>
<td>+</td>
<td>++</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0</td>
<td>--</td>
<td>0/-</td>
<td>0</td>
<td>-</td>
<td>-/0/+</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>CBG</td>
<td>++</td>
<td>--</td>
<td>-</td>
<td>-</td>
<td>0/-</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>--</td>
</tr>
</tbody>
</table>
Overall Conclusions

- Broadly similar levels of NOx for the GTL and CNG cases. GTL & CNG shows benefit versus reference diesel. B100 shows a detriment.

- PM emissions GTL & B100 show benefit versus reference diesel. PM emissions from natural gas vehicles are negligible, but this is also the case for all fuel options for Euro-5.

- Global warming potential (GWP) data shows that diesel, GTL and CNG come close. Important consideration is the size of error bars associated with WTW data.

- Best GWP results are obviously obtained with those biofuels considered in the study, E100, B100, CBG.

- In the absence of tax or for a level tax regime, GTL is the most cost-effective alternative fuel option for a bus fleet.

- In the current Dutch fuel tax regime, GTL and CNG options now come very close on fleet costs.

- For emissions cost-benefit trade-off & consideration of both PM & NOx, then GTL is the best option, although the tax regime can distort this.
Thank you

- Full TNO report available on TNO website
 1. www.tno.nl
 2. Select English version
 3. Select “Knowledge” followed by “Recent Reports”
 4. Search for “Alternative Fuels”